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Quantum processes in the field of a two-frequency circularly polarized plane
electromagnetic wave
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We solve Dirac’s equation for an electron in the field of a two-frequency plane electromagnetic wave,
deriving general formulas for the probabilities of radiation of an electromagnetic wave by the electron, and for
the probabilities for pair production by a photon when the two-frequency wave is circularly polarized. In
contrast to the case of a monochromatic-plane electromagnetic wave, when an electron is in the field of a
two-frequency circularly polarized wave, the emission rates of various ‘‘biharmonic photons’’ are affected by
interference between the two waves. When a high-energy photon is in such a field, similar interference effects
arise in the process of pair production.@S1063-651X~98!04802-8#

PACS number~s!: 41.60.2m, 12.20.2m, 32.80.Wr, 23.20.Ra
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I. INTRODUCTION

There have been many investigations of multiphoton p
cesses in strong electromagnetic fields since the inven
of the laser in the early 1960s. Reiss formulated
‘‘ ~multi!photon’’ absorption processes that generate elec
pairs when a photon collides with an intense wave field@1#.
Nikishov and Ritus derived formulas both for the ‘‘~multi-
!photon’’ absorption of an electron in a plane electroma
netic field, and the ‘‘~multi!photon’’ absorption processes o
pair production@2#. Narozhnyet al.. extended these formula
to the case of a circularly polarized electromagnetic wa
@3#; such effects were observed recently@4#. The reason we
enclose ‘‘~multi!photon’’ in quotation marks is discussed
Sec. III. Other theoretical studies made by the classical
proach @5,6# and by the semiclassical scattering theory
reviewed by Ehlotzky@7#, or by quantum electrodynamic
~QED! @8#, all of which describe the ‘‘~multi!photon’’ pro-
cesses of harmonic-photon generation, have contribu
enormously to advances in our understanding. The predi
second harmonic-photon emission phenomenon was
served by Englert and Rinehart@9#. Besides these simpl
harmonics of a monochromatic wave, it is possible to gen
ate various ‘‘biharmonics’’ by using a two-frequency inten
laser beam. We note that Puntajer and Leubner consid
the specific case of this problem by classical electrodynam
@10# ~constraining the frequency of the two wavesv2
52v1; the wave and electron beam are counterpropagati!.
In the present paper, we consider a more general case w
the QED theory, with an arbitrary frequency for the tw
waves and an arbitrary angle between the wave and elec
beam.

The theoretical research with QED on ‘‘~multi!photon’’
absorption processes in an intense laser beam is base
Dirac’s equation. The success of the QED theory in desc
ing such processes demonstrates that the semiclassical
ment of the laser beam as an external unquantized ele
magnetic field is a good approximation. Using t
semiclassical treatment of electromagnetic fields for an e
tron in a plane electromagnetic wave, an exact solution
571063-651X/98/57~2!/2276~7!/$15.00
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Dirac’s equation was found@11#. However, an exact solution
of this equation for more than one plane wave propagatin
arbitrarily different directions has not been obtained, and
seems difficult to do so because generally (k1k2)Þ0 (k1 and
k2 are four-vector momenta of two plane waves! so that the
Dirac equation cannot be solved by a simple integral.
remove this complication but, at the same time, not lo
generality in physics, we consider a two-frequency pla
wave; that is, two different plane waves propagating in
same direction. With this approach, we can find an ex
solution of Dirac’s equation for an electron in these wave

In this paper, we describe our study of a two-frequen
plane electromagnetic wave with four-vector momenta,k1
and k2, which interact with a single free electron. This a
proach led us to a new prediction of ‘‘~multi!photon’’ ab-
sorption and emission processes, and of ‘‘biharmon
photon’’ generation. As shown in the formulas given later
this paper, there are interference terms in the scattering
A substitution rule relating electron-wave collisions to t
cross-channel process of electron-positron pair productio
the collision of an external photon with a two-frequen
plane wave includes the effects of ‘‘~multi!photon’’ absorp-
tion or emission processes in pair production when a pho
collides with a two-frequency plane electromagnetic wa
The scattering probabilities of both ‘‘biharmonic’’ gener
tion and pair production depend on the relative directions
rotation of the two circularly polarized waves. Relativist
units with \5c51 are used through the paper.

This paper is organized as follows: In Sec. II, we sol
Dirac’s equation for an electron in a field of a two-frequen
laser beam that is circularly polarized; in Sec. III, we deri
probabilities of ‘‘biharmonic-photon’’ emission for an elec
tron in such a field. Section IV describes our use of t
substitution rule to derive the probabilities of pair producti
for a photon colliding with a two-frequency plane electr
magnetic wave. In Sec. V, we discuss the findings and g
our conclusions from the derived formulas.

II. THE WAVE FUNCTION

Since the number of photons in the laser beam is v
large, we can treat the field as an external, unquantized e
2276 © 1998 The American Physical Society
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57 2277QUANTUM PROCESSES IN THE FIELD OF A TWO- . . .
tromagnetic field. Suppose the two-frequency electrom
netic wave is circularly polarized, then the field of waves c
be described by the four-potential:

A5A11A2 ,

A15a1cosf11a2sinf1 , f15~k1x!, ~2.1!

A25a3cosf21a4sinf2 , f25~k1x!,

wherek1m andk2m represent the four-vector propagation~for
convenience, we supposek1.k2), while aim , i 51 –4, are
the amplitudes of the potential. The gauge is chosen s
that (k1A1)5(k2A2)50. We supposek1

W is parallel tok2
W , so

f2 /f15h5const,1 andk25hk1, the orthogonality condi-
tions are (a1a2)5(a3a4)5(kiaj )50, i 51,2, j 51 –4, while
their lengths satisfya1

25a2
2,a3

25a4
2, and (kikj )50, i , j 51,2.

For the two-frequency plane electromagnetic wave, it is c
venient to introduce a dimensionless measure of fi
strength as is usually done@2–4#:

j5
eA2^AmAm&

m
, ~2.2!

whereA2^AmAm& is the root mean square of the field; the
using Eq.~2.1! we have

j5
eA2a1

22a3
2

m
5Aj1

21j2
2, ~2.3!

where j1 and j2 are the field strengths of the two wave
respectively. Recently, nonlinear effects were observed@4# at
the laser intensities achieved (I'1018 W/cm2, j'0.6).

For an electron in a given electromagnetic field, t
second-order form of Dirac’s equation for the spinor wa
function c is expressed by

$2]222ieA]1e2A22m22 ie

3@~gk1!~gA18!1~gk2!~gA28!#%c50, ~2.4!

where A8 is derivative of A. We first supposecp

5e2 i (px)F1(f1)F2(f2) and put this into Eq.~2.4! following
a procedure similar to that described in section 40 of R
@12#, we find that the exact solution of Dirac’s equation h
the form

cp5F11
e~gk1!~gA1!

2~pk1!
1

e~gk2!~gA2!

2~pk2! G u~p!

A2q0

3exp$2 i @R11R21R31R41~qx!#%, ~2.5!

where
g-
n

ch

-
d

,

e

f.
s

R15
e~a1p!

~pk1!
sinf12

e~a2p!

~pk1!
cosf1 ,

R25
e~a3p!

~pk2!
sinf22

e~a4p!

~pk2!
cosf2 , ~2.6!

R352
e2

2~pk1!

@b1
2sin~f12f2!2b2

2cos~f12f2!#

12h
,

R452
e2

2~pk1!

@b3
2sin~f11f2!2b4

2cos~f11f2!#

11h

andbi is defined as

b1
25~a1a3!1~a2a4!, b2

25~a2a3!2~a1a4!,

b3
25~a1a3!2~a2a4!, b4

25~a1a4!1~a2a3!, ~2.7!

whereu(p) is a bispinor,pm is a constant four-vector deter
mining the state,p25m2; q is a kind of average four-vecto
momentum of electron, usually called ‘‘quasimomentum’’
the electron:

qm5pm2
a1

2e2

2~pk1!
k1m2

a3
2e2

2~pk2!
k2m , ~2.8!

so q25m2(11j2)5m
*
2 , m* is the ‘‘effective’’ mass of the

particle in the field. The factor 1/A2q0 in Eq. ~2.5! is chosen
as the normalization condition that

E cp8* cpd3x5~2p!3d~q8W2qW !. ~2.9!

From the wave function, we deduce that the electron
the electromagnetic field is no longer free; in fact, we c
expand the wave functioncp in Eq. ~2.5! as ~for details see
the Appendix!

cp5 (
s1s2s3s4

Ds1s2s3s4

u~p!

A2q0

exp$2 i @s1k11s2k21s3~k12k2!

1s4~k11k2!1q#x% ~2.10!

whereDs1s2s3s4
is a four-dimensional matrix. All the othe

general relations investigated in Sec. 2 of Ref.@2# are valid
in our case.

III. THE PROBABILITIES OF PHOTON EMISSION
BY AN ELECTRON

TheS-matrix for emission of an external photon with mo
mentum k8 and polarizatione8 by an electron@see Eq.
~73.19! in Ref. @12## is equal to

Sf i52 ieE cp8~ge8* !cp

A4peik8x

A2v8
d4x, ~3.1!

where e8* is a conjugate ofe8, v8 is the energy of the
emitted external photon, andcp and cp8 are the initial and
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2278 57AN YU AND H. TAKAHASHI
final states of the electron, respectively. We use Eq.~2.5!,
and following the formula~101.7! in Ref. @12#, then, simplify
Eq. ~3.1! as

Sf i5
1

A2q02q082v8
(

s1 ,s2 ,s3 ,s4

M f i
~s1s2s3s4!~2p!4d4@q1s1k1

1s2k21s3~k12k2!1s4~k11k2!2q82k8#, ~3.2!

where s1, s2, s3, and s4 are integers. For an electron i
monochromatic intense plane electromagnetic wave,
kishov and Ritus explained Eq.~11! in Ref. @2# as the ab-
sorption or emission of integer number of photons, if w
follow their argument we may extend the annotation to o
case, in which we deduce that thosesi are the number of
photons absorbed from the wave or emitted to the wave
the electron; however, because we use the classical treat
of initial electromagnetic wave, using the word photon m
not be clear, so the above argument may be modified~cor-
rected! as follows:s1, s2, s3, ands4 are the integer multiples
of momentak1, k2, k12k2, andk11k2, respectively, which
are absorbed or emitted by the electron. This signifies
the electron can only absorb or emit discrete momenta f
the electromagnetic wave. For this reason, and sometime
convenience, we still use ‘‘photon’’ or ‘‘multiphoton’’ but in
quotes, instead of using the discrete momentum of the e
tromagnetic wave. In this sense, we conclude that ‘‘mu
photon’’ processes may occur; we discuss this in more de
later. From the representation of thed function in Eq.~3.2!,
we obtain the following kinematic equation:

q1s1k11s2k21s3~k12k2!1s4~k11k2!5q81k8.
~3.3!

In the frame in which the electron is at rest, on average,qW
50, q05m ), (qk1)5m v1, (qk8)5m v8, (k1k8)
* * *
i-

r

y
ent
y

at
m
for

c-
-
il

5v1v8(12cosu), and u is the scattering angle betweenkW1

and kW8. With these expressions and the kinematic equat
~3.3!, we can assess emitted photon frequency:

v85
s1v11s2v21s3~v12v2!1s4~v11v2!

11~vv1 /m* !~12cosu!
, ~3.4!

wherev1 and v2 are the frequencies of two incident ele
tromagnetic waves in this frame, and

v5s11hs21~12h!s31~11h!s4 . ~3.5!

When the energy of the incident electron is low (g'1) and
frequency of the wave also is low (v1;1 eV in the labora-
tory frame!, then Doppler effects are negligible, so we ha
v1 /m!1, and Eq.~3.4! can be simplified as

v85n1v11n2v2 , ~3.6!

wheren15s11s31s4 and n25s22s31s4; this is the non-
relativistic limit of the biharmonic-photon. For an inciden
electron with high energy (g@1), v1 is Doppler shifted and
v1 /m* may be not small, but even if this term is negligib
the final-state photonk8 is Doppler shifted from its bihar-
monic value; so, in this relativistic limit, the emitted photo
is no longer~bi!harmonic. This is the reason why we enclo
the terms ‘‘~bi!harmonics’’ or ‘‘~bi!harmonic-photon’’ in
quotation marks.

If we sum the polarizations of the inital and final ele
trons, and of the emitted external photons for the square
the matrix elementM f i

(s1s2s3s4) in Eq. ~3.2!, and use the ex-
pansion formula from Eq.~101.7! in Ref. @12#, then, after a
very complicated derivation we find
(
polar

uM f i
~s1s2s3s4!u254pe2m2Js3

2~z3!Js4

2~z4!Js1

2~z1!Js2

2~z2!H 241F21
~k1k8!2

~pk1!~p8k1!
G

3F 4
~12h!s31~11h!s4

m2

~pk1!~p8k1!

~k1k8!
2j1

2
2Js1

2~z1!2Js111
2~z1!2Js121

2~z1!

Js1

2~z1!

2j2
2
2Js2

2~z2!2Js211
2~z2!2Js221

2~z2!

Js2

2~z2!
2

e2

m2

Js111~z1!Js211~z2!1Js121~z1!Js221~z2!

Js1
~z1!Js2

~z2!

3~b1
2cosf121b2

2sinf12!2
e2

m2

Js111~z1!Js221~z2!1Js121~z1!Js211~z2!

Js1
~z1!Js2

~z2!
~b3

2cosF1b4
2sinF!G J ,

~3.7!

whereJs(z) is the Bessel function of orders, and

f125f102f20, F5f101f20, tanf105
a2

a1
, tanf205

a4

a3
,
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z15Aa1
21a2

2, z25
Aa3

21a4
2

h
, z35

Ab1
21b2

2

12h
, z45

Ab3
21b4

2

11h
,

a i5eF ~aip!

~pk1!
2

~aip8!

~p8k1!
G , b i5

e2

2 F 1

~pk1!
2

1

~p8k1!
Gbi

2, i 5124. ~3.8!

The probability of ‘‘biharmonic-photon’’ generation by an electron per unit time is

w$s1 ,s2 ,s3 ,s4%5E uM f i
~s1s2s3s4!u2

d3k8d3q8

~2p!62q02q082v8
~2p!4d4@q1s1k11s2k21s3~k12k2!1s4~k11k2!2q82k8#. ~3.9!

Then, the total scattering rate is

W5 (
s1s2s3s4

w$s1 ,s2 ,s3 ,s4%. ~3.10!

Suppose the energy emission rate of the ‘‘biharmonic-photon’’ isI $s1 ,s2 ,s3 ,s4%, then it can be simply obtained by multiplyin
v8 by the integrand of Eq.~3.9!,

I $s1 ,s2 ,s3 ,s4%5E uM f i
~s1s2s3s4!u2

d3k8d3q8

~2p!68q0q08
~2p!4d4@q1s1k11s2k21s3~k12k2!1s4~k11k2!2q82k8#. ~3.11!

The expression in Eq.~3.7! can be simplified by using the polarization property of the electromagnetic wave. Sinc
two-frequency plane electromagnetic wave is circularly polarized, these two waves have either like or opposite h
Thus, there are two cases; first, that of two circularly polarized electromagnetic waves, which have the same dire
rotation, that is, they are both left-circular-polarized or right-circular-polarized; the other case is where these two wav
opposite directions of rotation. In both cases, the field of waves can be expressed as

A5A11A2 ,

A15a1cosf11a2sinf1 , f15~k1x!, ~3.12!

A25z@a1cos~f21w!6a2sin~f21w!#, f25~k2x!,

where w is a phase difference between these two plane waves; the plus in6 in the above equation corresponds to li
helicities, and the minus corresponds to opposite helicities. The factorz defines the ratio of field strength between the two la
beams, so if the field strength of the wavek1 is j1, then the field strength of the other wave isj25zj1, and the total strength
of field is j5j1A(11z2) from Eq.~2.3!. For two circularly polarized waves with like helicities, Eq.~2.7! givesb35b450 for
any phasew; from Eqs.~2.5! and ~2.6! we can see the component ofk11k2 in the wave function has disappeared, so t
kinematic equation is reduced to

q1s1k11s2k21s3~k12k2!5q81k8. ~3.13!

For opposite helicities,b15b250 and so there is nok12k2 component remaining in the wave function and kinema
equation is

q1s1k11s2k21s4~k11k2!5q81k8. ~3.14!

We put these two conditions together, then:

q1s1k11s2k21sl~k17k2!5q81k8, ~3.15!

wheresl5s3 for like helicities andsl5s4 for opposite helicities, and the upper sign in7 or 6 always corresponds to like
helicities, while the lower sign corresponds to opposite helicities. We use these definitions through the paper. If we
invariantu5(k1k8)/(k1p8), then from Eq.~3.9!, the probabilities for above two cases reduce to

w6
$s1 ,s2 ,sl %5

e2m2

4q0
E

0

uv du

~11u!2
Js1

2~z1!Js2

2~z2!Jsl

2~zl !H 241j1
2F21

u2

~11u!GF22~11z2!12z
Jsl11~zl !1Jsl21~zl !

Jsl
~zl !

1S Js111~z1!

Js1
~z1!

1z
Js261~z2!

Js2
~z2! D 2

1S Js121~z1!

Js1
~z1!

1z
Js271~z2!

Js2
~z2! D 2G J , ~3.16!



the
r what

on,

2280 57AN YU AND H. TAKAHASHI
where

uv5
2v~k1p!

m*
2

, v5s11hs21~17h!sl ,

z152v
j1

A11j2
A u

uv
S 12

u

uv
D , z25

zz1

h
, zl5

2v
17h

zj1
2

11j2

u

uv
, ~3.17!

andz1, z2, andzl are calculated using the formulas in Sec. 101. of Ref.@12#. The results for both cases are independent of
phasew in Eq. ~3.12!; an interesting point is that the two waves can interact simultaneously with an electron, no matte
the phase difference is between them.

Formula ~3.16! should include the case of a monochromatic wave; this can easily be checked by puttingz50 into this
equation~3.16!. We obtain exactly the same formula as that in Ref.@3#. If we expand formulas~3.16! in powers ofj1 andz
whenj1!1 andj2!1, we can obtain the limit of a weak electromagnetic field. As expected, the term of orderj1

2 is a simple
sum of the Klein-Nishina formula~see section 86 in Ref.@12#! of the individual waves. The higher term of orderj1

4 involves
many parts; here, we give the formula of the interference part, that is,s150, s250 andsl51 ~for like helicitiessl5s351 and
s450, for opposite helicitiessl5s451 ands350) part in Eq.~3.16!:

Winter5
e2m2

q0
j1

4z2H S 1

2
2

2

u12
D @12 ln~11u12!#1

5

4~11u12!
2

1

4~11u12!
2J , ~3.18!

where

u125
2@~k1p!2~k2p!#

m*
2

. ~3.19!

Generally, thej4 term is a nonlinear contribution, so inteference effects are nonlinear effects.

IV. THE PROBABILITIES OF PAIR PRODUCTION BY A PHOTON

If we substitutep→2p, k8→2kg andd3k8→d3q in Eqs.~3.9! and~3.16!, and reverse the common sign of the expressi
we can obtain the probability per unit time of pair production by a photon of momentumkg in a two-frequency plane
electromagnetic wave:

w6
$s1 ,s2 ,sl %5

e2m2

4kg0
E

1

uv du

uAu~u21!
Js1

2 ~z1!Js2

2 ~z2!Jsl

2 ~zl !H 21j2~2u21!F22~11z2!12z
Jsl11~zl !1Jsl21~zl !

Jsl
~zl !

1S Js111~z1!

Js1
~z1!

1z
Js261~z2!

Js2
~z2! D 2

1S Js121~z1!

Js1
~z1!

1z
Js271~z2!

Js2
~z2! D 2G J ~4.1!
n
in
e
o

ob-

it

,
is
and

u5
~k1kg!2

4~k1q!~k1q8!
, uv5

v~k1kg!

2m
*
2

, v.vs5
2m

*
2

~k1kg!
.

~4.2!

z1, z2, zl , andv have the same expression as in Eq.~3.17!.
In this case, the kinematic equation is

kg1s1k11s2k21sl~k17k2!5q1q8, ~4.3!

whereq and q8 are the ‘‘quasimomentum’’ of the electro
and positron, respectively. Thesl has the same meaning as
Eq. ~3.15! and is connected with interference effects. Wh
we putz50 into the above formula, it reduces to the case
a monochromatic wave.
n
f

In the center-of-mass system~in which kg
W1vk1

W5qW 1q8W

50), the energy of electron and positron can be easily
tained:

q05q805Av
2

~kgk1!. ~4.4!

For the case ofj!1, it corresponds to the weak field lim
and we can expand the formula~4.1! in powers ofj1 andz
when j1!1 andj2!1. The term of orderj1

2 is the simple
sum of the Breit-Wheeler formula@13# of individual waves,
as expected; the termj1

4 gives a nonlinear contribution; here
we present only the interference effect in this term, which
the case ofs150, s250, sl51,
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Winter5
e2m2

4kg0

j1
4z2

u12
2

$2~112u12!Au12~u1221!

1 ln@2u122112Au12~u1221!#%, ~4.5!

where it needs

u125
~k1kg!7~k2kg!

2m*
2

.1. ~4.6!

From condition~4.2! we deduce that a higher-energy ph
ton will more easily produce electron pairs because as
photon’s energy increasesvs becomes smaller; then, lowe
order pair production processes occur~corresponding to a
smallv). On the other hand, for any given set of integerssi ,
there is a threshold of pair production, but if the integerssi
are allowed to be arbitrarily large, the threshold can be a
trarily low. This is nonlinear effect and it is always neg
gible for the case of weak wave@14#.

Another interesting phenomenon of the interference ef
is that in the case of opposite helicities it is easier to ass
an interference contribution to pair production than in t
case of like helicities. For example, an incident photon w
energyvg;100 GeV propagates in an opposite direction
an intense two-frequency laser beam with one freque
v1;2 eV andh;0.5, with dimensionless field strengthj
;0.5, which corresponds to the strength of the magn
field in the center-of-mass systemBmax;jB0, whereB0 is the
critical strength of the magnetic field,B05m2c3/e\; in this
case,vs;1.9, if s151, s250, sl51, then for the case of like
helicities v5s11s2h1sl(12h)51.5,vs and it has no
contribution to pair production; however, for opposite heli
ties v5s11s2h1sl(11h)52.5.vs and its probabilities
can be evaluated from Eq.~4.1!, which involves interference
effect. This phenomenon that the lower rate for pair prod
tion near threshold for like helicities may be explained
angular momentum barrier effect, because the photons h
like helicities their total spin is larger.

V. DISCUSSION AND CONCLUSIONS

In Secs. III and IV, we formulated the probabilities
‘‘biharmonic-photon’’ generation and of pair productio
The total probabilities of scattering are the simple sums
Eqs.~3.16! or ~4.1!,

W65 (
s1 ,s2 ,sl

w6
$s1 ,s2 ,sl %. ~5.1!

For the case of an electron in the two-frequency plane e
tromagnetic wave, each term in this equation correspond
the probability of the emission of a photon with frequen
v8 in the rest frame that is defined in Eq.~3.15!. For the case
of the pair production, each term in this equation cor
sponds to the the probability of generating the particles
the pair with the energy given in Eq.~4.4! in the center-of-
mass system. Therefore, the different combinations
$s1 ,s2 ,sl% correspond to different modes, and every mo
has its relevant probability.

In Sec. III, we gave the meaning ofsi , i 51 –4; here, we
discuss it further. For convenience, we assumek35k12k2,
e
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k45k11k2, then si.0 ~or si,0) corresponds to the oc
curences of processes of absorption~or emission! of usi u
times the momentumki from waves by the electron, that is
only the discrete four-vector momentum of the electrom
netic wave can be absorbed or emitted by the electron. In
sense, we may say that the electron absorbs~or emits! ‘‘pho-
ton~s!.’’ When si,0, the ‘‘photon’’ (si521) or ‘‘multipho-
ton’’ ( si,21) is emitted by the electron into the wave
exactly the wave frequency. The emission effects here a
novel kind of stimulated emission in which ‘‘photon~s!’’ are
emitted by an electron into one laser beam due to the p
ence of another of different frequency. This contrasts w
the more usual configuration involving a single laser f
quency @15#. The two-frequency electromagnetic wave
treated in a classical way, in this analysis it does not con
photons. After solving the Dirac equation, we find an ele
tron in a plane electromagnetic wave can absorb or emit o
discrete 4-momenta from and to the two-frequency wa
that is to say, the processes of the absorption~or emission! of
an electromagnetic wave by the electron conform to a qu
tum mode, and that the wave absorbed or emitted with
crete 4-momentum is a wave quantum~s!, that is, a photon~s!.

In the interference processes, the absorption or emis
of the wave with momentumk17k2 is just like k1 or k2;
therefore, we can say that the electron absorbs or emitsusl u
(sl5s3, s450, if like helicities, andsl5s4, s350, if oppo-
site helicities! number of ‘‘photons’’ of momentumk17k2.
Though at first there are no waves with momentumk17k2,
from Eq. ~3.3! it seems there is no difference between m
mentumk17k2 and individual momentumk1, k2. If we sup-
pose the ‘‘photons’’ of momentumk17k2 are really like
individual photons, then this interpretation leads to intere
ing phenomena, such that whensl,0 there should beusl u
number of ‘‘photons’’k17k2 emitted~these ‘‘photons’’ are
not final-state photonsk8), which are not Doppler shifted
For the case of an intense wave (j;1), we may expect tha
those emitted waves with mometumk17k2 are observable,
that is, when a two-frequency electromagnetic wave has
helicities, we may find a third color with frequencyv1
2v2 in the wave; when the helicities are opposite a th
color with frequencyv11v2 is expected. On the other han
from Eq. ~3.18!, the contribution from thek17k2 part is of
the order ofj4 or higher, in this sense, the momentumk1
7k2 may have no special meaning, it just corresponds
interference corrections, so the phenomena just mentio
above may be impossible. We cannot be sure which inter
tation is correct, the full-quantum treatment of an electron
an intense plane wave may clarify matters. The above a
ments are also true for the case of pair production.

For both ‘‘biharmonic’’ generation and pair production
we classify physical events by mode$s1 ,s2 ,sl%, not by final
state. Sometimes, the different mode corresponds to the s
final state, but they are different. For example, in the c
that k152k2, the mode withs152, s251, s350, ands45
21 ~opposite helicities!, and the mode withs151, s25s3
5s450 have the samev51, which corresponds to the sam
energy of final-state photonv8 in Eq. ~3.4!, or similarly, for
final-state particles of pairp0 andp80 in Eq. ~4.4!, but they
have, at least, one difference: they correspond to differ
probabilities that can be calculated with Eqs.~3.16! or ~4.1!.

The effects discussed above are based on results de
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from Dirac’s equation where the field of a laser beam
described in an unquantized classical way. When a t
frequency laser beam is scattered by electrons, there are
ous ‘‘biharmonic-photons’’ emission processes that follo
‘‘photon’’ or ‘‘multiphoton’’ absorption and stimulated
‘‘ ~multi!photon’’ emission processes; the scattering pr
abilities are affected by the effects of interference betw
two laser beams. Similar effects are involved in pair prod
tion by the interaction of an externalg photon with a two-
frequency laser beam.
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APPENDIX

We can express wave function~2.5! as

cp5@11 f 1~f1!1 f 2~f2!#

3exp$2 i @R11R21R31R41~qx!#%
u~p!

A2q0

,

~A1!

where f 1(f1)5e(gk1)(gA1)/2(pk1) and f 2(f2)
5e(gk2)(gA2)/2(pk2), they are 43 4 matrix, then we use
the expansion

f 1~f1!exp~2 iR1!5(
s1

Bs1
exp~2 is1f1!,

f 2~f2!exp~2 iR2!5(
s2

Bs2
exp~2 is2f2!, ~A2!
s
-
ri-

-
n
-

.
-
nd

where coefficientsBs1
andBs2

are 43 4 matrixes; they can
be calculated by

Bs1
5

1

2pE0

2p

df1f 1~f1!exp@2 i ~R12s1f1!#,

Bs2
5

1

2pE0

2p

df2f 2~f2!exp@2 i ~R22s2f2!#, ~A3!

and

exp~2 iRi !5(
si

Csi
exp~2 isif i !, i 5124,

Csi
5

1

2pE0

2p

df iexp@2 i ~Ri2sif i !#, ~A4!

wheref35f12f2 andf45f11f2, then, the wave func-
tion becomes

cp5 (
s1s2s3s4

Ds1s2s3s4

u~p!

A2q0

exp$2 i @s1f11s2f2

1s3~f12f2!1s4~f11f2!1~qx!#%, ~A5!

wheref15(k1x) andf25(k2x), and matrixDs1s2s3s4
is

Ds1s2s3s4
5Cs3

Cs4
~Cs1

Cs2
1Cs1

Bs2
1Cs2

Bs1
!. ~A6!
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